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A version of smoothed particle hydrodynamics, a method first developed by Lucy, Gingold 
and Monaghan, and Wood, is applied to three-dimensional adiabatic flows both with and 
without shocks. Results of such numerical experiments with N- lo2 particles agree quite well 
with analytic results for the temperature as well as for the density and velocity provided that, 
for the shock tube problem, the proper artificial viscosity, Q, is used. Various forms of Q are 
discussed in terms of their effectiveness in damping out unphysical, non-systematic particle 
motions. The treatment of boundary conditions and the “biased point” correction are also 
discussed. The results are comparable in accuracy with the one-dimensional calculations of 
Monaghan and Gingold. 0 1986 Academic Press, IX. 

I. INTRODUCTION 

Particle methods are often computationally superior to methods involving spatial 
grids when computing highly asymmetric three-dimensional gas-dynamical flows. 
The technique of employing a quasi-random distribution of particles to simulate 
local hydrodynamic variables has been extensively discussed in the recent literature 
[l-6, and references therein] and has been found to be both reasonably accurate 
and computationally efficient. 

Until recently, almost all calculations using smoothed particle hydrodynamics 
(SPH) have involved isothermal flows, but Monaghan and Gingold [7, referred to 
here as MG, S] have demonstrated that the SPH method can be extended to 
adiabatic flows in which each representative particle is endowed with an additional 
thermal parameter-temperature, specific internal energy, or entropy-in addition to 
its velocity which characterizes the local hydrodynamic flow velocity. As a test of 
the adiabatic SPH method, the shock tube problem was solved by MG with high 
accuracy, including a reasonably sharp shock transition. The shock width in this 
1D calculation was governed by a new type of artificial viscosity which is sensitive 
to the random motion among the representative particles and which simulates some 
aspects of bulk viscosity. 

The SPH calculation described by MG is strictly one-dimensional, as if all the 
representative particles were constrained to move along a wire. But it is clear that 
the real value of SPH as a computational tool lies in its application to two- and 
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three-dimensional problems. We discuss here a truly three-dimensional adiabatic 
SPH scheme using only N 100 particles which accurately describes the one-dimen- 
sional adiabatic blowoff and steady adiabatic shocks of various strengths. 

SPH shocks in three dimensions present a number of new problems. We have 
independently developed an artificial viscosity which is sensitive to the local 
peculiar velocity of representative particles. Random particle motions, which are 
particularly important within and behind shock transitions, must be properly 
damped and successfully converted into the hydrodynamic thermal parameter tbat 
labels each particle. In terms of the mean interparticle separation, our shocks in 3D 
are comparable to or sharper than those in 1D described by MC. 

The conditions specified at the boundary are especially important to the success 
of 3D SPH calculations. The (smoothed) density evaluated at a particular particle 
must be corrected for the influence of fluid beyond the flow region as well as the 
“biased-point” correction described by Wood [5]. We derive this correction for 
both 1D and 3D gaussian and exponential smoothing functions and discuss the 
limitations imposed on the total number of representative points used in a 3D 
calculation. 

II. EQUATIONS 

In smoothed particle hydrodynamics, the flow variables at r are regarded as a 
smoothed local average: 

where f(r) is a (scalar or vector) flow variable, and the smoothing function IV is 
normalized to unity when integrated over all space. Normally, continuous flow 
variables-density, temperature, or magnetic field, for example-are regarded as 
being localized at N “particles” that move with the fluid flow. Assuming these par- 
ticles to be randomly distributed, the integral in Eq. (1) is approximated by a 
weighted sum over values stored at nearby points. The factor p(r’)/M serves as a 
convenient normalized probability distribution in this Monte Carlo approximation, 
where M is the total mass of all the particles. Furthermore, approximation of flow 
variables as in Eq. ( 1) can be considered as a special case of interpolation by kernel 
estimation. This leads to a systematic procedure for deriving SPH equations from 
the standard equations of hydrodynamics [6]. 

In Lagrangian hydrodynamics, it is necessary to establish values of the smoothed 
variables at a particular (the kth) particle. An appropriate smoothing function 
should therefore depend only on the interparticle distance, rik = \rj- riile We adopt, 
following Wood [5], an exponential form: 
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The choice of kernel is, in principle, arbitrary. The exponential kernel differs from 
the gaussian kernel, as explored extensively by Gingold and Monaghan, in that (1) 
it has no maximum, a quality which may help avoid secondary structures [4], and 
(2) since it falls off more slowly with r/h a somewhat higher resolution (smaller h) 
can be utilized. 

With this smoothing function, the sum in Eq. (1) can be written as 

where A(Z), discussed below, corrects for the biased choice of the position of the kth 
particle as one of the random points for the Monte Carlo integration [S], and for 
proximity to boundaries. The smoothing length, hk, is given by 

where jlk is the mean interparticle separation at the position of the kth particle, 
(Npk/M))“3. The ratio of mean interparticle separation to smoothing length, I, is 
taken to be constant. We use Eq. (3) to determine the density pk for which f = 1, 
and the internal energy density (pQ),, for which f = 6 (ergs per gram). 

The equation of motion for the kth particle is 

du, 
-= - 2[v(PG)Ik ‘Q =A. 

dt 3pk - -i- k 1 I ” 

where 

CVbQ)lk= & ,I &(rj) tjke-)ik’hk, 

klfk 

(5) 

and ijk is the unit vector (rj - rk)/rjk. The artificial viscosity Q is discussed below. 
Note that the flow (or particle) velocity uk is not a locally smoothed quantity like 
Pk and (@?k. 

In addition to position rk and velocity uk, in adiabatic flow each particle is 
endowed with a specific internal energy gk which is determined by an energy 
equation 

In both space and time derivatives we ignore variations of hk. 
Equations (5) and (7) along with uk = dr,/dt provide 7N equations for solving 

general adiabatic gas flow including shocks; the conservation of mass is 
automatically satisfied by the conservation of particles. Following Gingold and 
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Monaghan [3], we use a simple explicit leap frog scheme to calculate time-advan- 
ced quantities: 

The time-advanced densities p;+ ’ can be found directly from the r;+ ’ and Eq. (3 ). 
It is sufficiently accurate to evaluate the smoothing parameter h, in terms of den- 
sities at the retarded time, p;. The time step is limited by a modified Courant con- 
dition: 

where cSk = ( 1O8k/9)1’2 is the local sound speed and a,, a,, and a3 are dimen- 
sionless coefficients of order unity. 

A. THE CORRECTION ii(C) 

The mean interparticle distance among N particles is il = ( V/N)“3, whe V= L3 is 
the characteristic volume of the flow region. Generally, when 1 s L/Z/h is less than 
unity, the approximation for pk,fk given by Eq. (3) with n = 0 is excellent aside 
from boundary effects (see below). 

However, I= N-- ‘/j/(h/L) can exceed unity if high resolution of the flow variables, 
h < L, is required with fixed N. For example, if N = 100 and h,/L < 0.1, then I > 2.15. 
As noted by Wood [IS] the smoothed density p, will be overestimated for large 
values of I due to the enhanced contribution of the kth particle to the sum in 
Eq. (3). A correction term, A(r), proportional to (p,- p)/p is useful to adjust P,~ to 
the true density p of a locally uniform medium. 

The correction ,4(l) can be estimated by assuming that the mass points are 
arranged in a uniform lattice [S]. The appropriate corrections for one (1D) and 
three (3D) dimensional grids are 

A”D’ = 
E - 2/l, 

j= -,IJ 
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1D 

cc 

TABLE I 

Values of ngD) and ngD) 

3D 3D 

co 4 3 2 R 

0.5 0.083 0.121 -31.97 - 55.47 -91.99 - 94.50 
1.0 0.164 0.259 0.010 - 0.623 - 2.69 - 7.29 
1.5 0.241 0.378 0.375 0.351 0.194 - 0.298 
2.0 0.313 0.484 0.484 0.483 0.469 0.723 
2.5 0.378 0.571 0.577 0.577 0.576 0.917 
3.0 0.438 0.655 0.655 0.655 0.655 0.949 

and 

where the subscripts refer to properly normalized exponential or gaussian 
smoothing functions. Values of /i are listed in the 1= CXI column of Tables I and II. 
In the three-dimensional calculations described below we have employed the 
exponential kernel WgD) with I = 2.5 fixed throughout the calculation; this provides 
a resolution of h/L-0.09 for N- 100. We therefore adopt a correction Ag”’ = 0.576 
in Eq. (3) when the particle distributions are relaxed (see below). Wood’s 
approximation ng”) N erf (l/271 112) overestimates ,4 gD) by about 20% at I = 2.5. In 
MG’s 1D calculation, which employed 400 particles, h = 0.015 was fixed and 
I = 0.1 - 0.5 was sufficiently small that no explicit correction was required, i.e, 
ngD) = 0.0. In 3D calculations, it is more difficult to ensure 1~ 1, and the correction 
/1(3D’ provides a significant improvement. 

An additional modification to this biased-point correction may be required if the 

1D 

co 

TABLE II 

Values of @‘I and @“I 

3D 

a, 4 

3D 

3 2 

0.5 0.000 0.000 0.000 -0.0178 -0.641 
1.0 0.000 0.002 0.002 0.002 0.002 
1.5 0.0294 0.126 0.126 0.126 0.126 
2.0 0.150 0.418 0.418 0.418 0.418 
2.5 0.295 0.655 0.655 0.655 0.655 
3.0 0.409 0.794 0.794 0.794 0.794 
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kth particle is too close to a boundary of the flow. If particles beyond the boundary 
do not contribute to the sum in Eq. (3), pkfk will be underestimated and n(l) must 
be reduced. In the flow problems described below, we assume periodic boundary 
conditions in two Cartesian directions perpendicular to the flow, requiring that two 
of the sums for LI(E”) be restricted to Ii\, jji <-I. For example, for N= 125, 
21-1-l = 5, so I= 2 is appropriate for the midpoint of a 5 x 5 grid perpendicular to 
the flow. Values of ngD) and nijlD) are provided in Tables I and II for f = 2, 3, and 
4. For our value I= 2.5, hgD1 is not appreciably different from its I= ix value. 
However, for Id 1, the corrections to pk,fk can be unacceptably large. When 12 1, 
d(l) tends to be independent of I since fewer particles lie within the smoothing dis- 
tance h, but n can be large in this situation. As can be seen by examining the 
expressions for n in one dimension, the gaussian kernel, Wg”’ always requires less 
of a correction than the exponential kernel, WE (I”). This is also the case in three 
dimensions for 1~ 1. However, the function p,,/p diverges much faster when I > 1 for 
Wi,““’ than it does for Wg”‘. For example, when I = 2 p,sip is 1.15 and 1.60 for 
W$“’ and WgD) respectively, while for I = 2.5 the respective values are 1.36 and 
2.83. Thus 3D calculations with a gaussian kernel can provide a particularly poor 
approximation to pf when 13 1 which can arise if h is fixed and the flow density 
drops to low values. Finally, we note that for fixed N and L, 1 must be smaller by 
about 0.4 when using WgD) than for W, ‘3D) to incorporate the same number of local 
particles within the half width of the smoothing function. 

We have chosen WgDl as the smoothing function rather than WgD) because of 
the improved accuracy of W, (3D) for larger I, its demonstrated success in 
representing the density in previous calculations, and the guaranteed resistance of 
WgD1 to spurious particle clustering [4]. 

III. THE RAREFACTION WAVE 

Our first test of the 3D adiabatic SPH method is to consider the problem of the 
abiabatic (y = 5/3) one-dimensional free expansion into a vacuum. The initial con- 
figuration is set up by choosing the positions of the particles at random in a box 
then allowing them to relax isothermally under an equation of motion with 
damping: 

dUk_ 2Po v 
dt 3 pk 87rNh;: 

go 1 e-vkihol’;k -T; k=l, N. 
/#k 

Here uk is the velocity of the kth particle, N is the number of particles, L’ the 
volume of the box, pO = M/V, where M is the total mass of all particles, and 8, is 
the initial specific internal energy. Boundary conditions are strictly periodic in all 
three directions during the damping transient. All particles have identical 
smoothing lengths 11, during the damping preparation: 
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and the damping time z is chosen to be 0.1 h,a,/b,, in which a, is the initial 
adiabatic sound speed. Fluctuations in the density are reduced by this method until 
the variance N-‘C (pk/pO- 1)2 is about 1%. The damped and very subsonic 
residual velocities are reset to zero prior to the blowoff calculation. 

We invoke periodic boundary conditions in the two directions perpendicular to 
the one dimensional flow. Although the physical flow is entirely in the x-direction, 
individual particles may acquire y and z velocity components. Should particles pass 
through a y or z wall, they re-enter the volume V from the opposite wall. In 
addition, when smoothing the flow variables, each particle is treated on an equal 
footing by considering it as being located at the origin of the y, z coordinates 
interacting with particles or their images consistent with the periodic boundary con- 
ditions and the y, z box dimensions. In the x-direction, one boundary is free, but a 
correction must be applied to the opposite boundary to simulate the existence of a 
semi-infinite region of uniform density p0 and thermal energy FO. If the kth particle 
is located a distance qh, from this uniform region, the corrections to the density 
and acceleration are 

and 

FIG. 1. Results for the adiabatic rarefaction wave for density with N= 125 plotted versus the 
similarity variable x,~,,, = (x - L,)/uO t. Triangles represent time = 0.29, boxes time = 0.58, and stars time 
=0.89. Times are in units of the sound crossing time, 2L,/ao. 



PARTICLE HYDRODYNAMICS 421 

o,o I I 1 I I I 1 I 1 
-3 -2 -1 0 1 

saim 

FIG. 2. Results for the adiabatic rarefaction wave for temperature plotted in the same manner as the 
density. 

where the integration is over the uniform semi-infinite region. These corrections 
prevent an unphysical density drop and pressure gradient near the boundary. A 
fixed boundary can also be simulated by imposing reflection symmetry in which 
each particle is repulsed from its image at the boundary. Results for the rarefaction 
wave were similar using either of these boundary conditions. 

The density, temperature, and velocity for the computed adiabatic rarefaction 
wave are shown in Fig. 1-3. Here I= 2.5, Q =O, and N = 125 particles are con- 

FIG. 3. Results for the adiabatic rarefaction wave for velocity plotted in the same manner as the 
density. 
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sidered in a box of dimensions L, : L,, : L, :: 2 : 1 : 1. Exploiting the self-similar 
nature of the problem, we plot the x-variation of flow variables at various times 
superimposed as functions of the similarity variable xsim = (x - L,)/a, t. Times are 
in units of the sound crossing time 2L,.a,. To avoid confusion, each point in 
Fig. l-3 represents the average of a bin of live particles. In the undisturbed medium 
ahead of the rarefaction wave, the mean particle separations in units of the 
similarity variable are 0.43, 0.22, and 0.14 for times 0.29, 0.58 and 0.89, respectively. 
The weak discontinuity at the head of the rarefaction wave is smoothed over several 
interparticle separations due to the finite resolution of the SPH method. At the 
earliest times, t 6 0.3 or so, inaccuracies result from the rather small number of par- 
ticles participating in the flow. For t 3 1, the computed rarefaction wave interacts 
with the fixed boundary and similarity no longer applies. Apart from this, the 
results are in excellent agreement with the expected flow. 

IV. STEADY SHOCK 

The initial conliguration for a standing shock is arranged by choosing particles 
randomly in the y, z-plane and as random samples of the probability distribution 

P(x) = PI/PO, -L,<x<O; 

P(x) = PJPO, Odx<L, 

in the x-direction [9]. As before, p0 = M/V. The pre-shock and post-shock sides are 
relaxed separately at constant ho and go, although unrelaxed, purely random par- 
ticles are introduced once the calculation begins. Initially, velocities, internal 
energies, and smoothing lengths appropriate to the position of each particle are 
assigned in accordance with the expected jump conditions of the shock under con- 
sideration. Following an initial transient, as the shock front widens by several h, the 
flow becomes steady again establishing the computed jump conditions. 

As before, the boundary conditions are periodic in the I?- and z-directions. In the 
x-direction, the density and acceleration are corrected for the effects of two semi- 
infinite uniform flows on both sides of the shock; 

6p,=$ 
[ 

~(r11+2)c-‘“+(qz+2)e~“’ ) 
0 2 1 

and 

where h,u], and h,q, are the distances to the embedding media with uniform pl, &I 
and p2, F2. Once the calculation begins, particles are introduced into the pre-shock 
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flow at regular rate to keep the total number of particles N essentially constant, but 
the particle input rate must be independent of the post-shock outflow rate to avoid 
feedback effects. 

The shock structure in SPH is characterized by strong cross-streaming among 
the representative particles. Such relative motions represent an unrealized thermal 
energy which must be converted into thermal energy at each particle by means of a 
properly defined artificial viscosity Q. We have considered three types of artificial 
viscosity. The first is equivalent to the von Neumann-Richtmyer viscosity, 

Q(l) = (a Ax)2 p(V . u)‘, v*u<o; 

Q(‘LO, v.u>o. 

where Ax is the local grid size and a is a parameter of order unity. In the smoothed 
particle realization of this viscosity, we replace Ax with the smoothing length h and 
evaluate V . u with (V . pu - u. Vp)/p following MG. For the kth particle 

where 

A,jk = 1, (u,-uu,).rjk<O; 

A, = 0, (uj-u,).rik>O, 

assures that only particles converging toward the kth particle contribute to the local 
artificial viscosity, a technique also employed by MG. 

Second, we considered an artificial viscosity in the form of a pressure based on 
the peculiar velocity of the kth particle relative to its neighbors, 

A third type of viscosity is specifically designed to damp out random velocities in 
the shock region, 

where (u)~ is the local mean velocity at the position of the kth particle, 

Here 6u, is a boundary correction similiar to 6pk and 6Ak above. 
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The artificial viscosity developed by MG contains, in addition to a, a second 
dimensionless control parameter E such that QMo K (Y; + E/z~) - ‘, where 0 < E < 0.1. 
This form of the artificial viscosity was used in a three-dimensional calculation by 
Gingold and Monaghan [S], but was largely justified on the basis of 1D con- 
siderations by MG. Evidently E is required in strong compressions following ID 
shocks (where no counterstreaming is possible) to avoid undesirably large values of 
Q MG. In our three-dimensional calculation the post-shock condition is charac- 
terized by particles counterstreaming normal to the shock. Also our choice of an 
exponential kernel, rather than the gaussian employed by MG, enhances the 
pressure related mutual repulsion among the particles. Finally, MG note that E 
must be a function of the Mach number for best results. We have nevertheless com- 
puted shocks comparable in quality to those of MG without using this additional 
parameter. 

Momentum is more accurately conserved and the results generally better when 
an anti-symmetrical form> for the gradient of the artificial viscosity is used in the 
equation of motion, 

Computed results for a Mach 3 shock using 150 particles are shown in Figs. 46. 
The x-coordinate is in units of the half length of the box, and the density, tem- 
perature, and velocity are in units of the analytic values of variables in the pre- 
shock flow. On this scale the smoothing length is about 0.11 in the pre-shock flow 
and 0.087 in the post-shock flow. Time is in units of the expected flow time across 

P 

FIG. 4. Results with N= 150 for the Mach 3 steady state shock for density, plotted versus position in 
units of the box’s half length. Triangles represent time = 1.87, empty boxes time = 2.0, and stars time 
=2.13. Filled boxes represent the density with the modified correction discussed in the text. 
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FIG. 5. Temperature variation with N = 150 for the Mach 3 steady state shock 

the entire box, 4L.,/3u, where u2 is the sound speed in the pre-shock flow. The three 
times illustrated are separated by 0.13 in these units. The results shown were 
calculated using the second form of the artificial viscosity discussed above with 
a = 3.0. Figure 7 shows the ratio of this viscosity to the local gas pressure. Com- 
parison of the flow variables at several times indicates that the shock is quite 
steady. During the entire calculation energy is conserved to about 8 % and momen- 
tum to about 5%. To avoid confusion, the particles are grouped in bins of five as 

I 
0.0 3 

Cl 
-1.0 -0.5 0.0 0.5 1.0 

r/l 

FIG. 6. Velocity variation with N= 150 for the Mach 3 steady state shock 



426 LOEWENSTEIN AND MATHEWS 

1.5 I 1 i / / I , I / - 

a 

0@ 

@I * 
1.0 - a 

4fP a0 
a 

QA a 
0.5 - *B 0 

00 
-1.0 -0.5 0.0 0.5 1.0 

x/l 

--I 

FIG. 7. The artificial viscosity divided by the pressure, 3Q/(2p&) again plotted versus position in 
units of the box’s half length for N = 150, Mach number = 3, using the second type of artificial viscosity 
with viscosity parameter a = 3.0. 

before. We note that in all of our calculations, the fluctuations of the flow variables 
evaluated at individual neighboring particles in a bin is less than 10%. 

As shown in Fig. 4, the density in the pre-shock flow is systematically high by 
about 20% at all times. In fact, however, the true density of particles in the pre- 
shock region, obtained by dividing the number of particles by the volume, is exactly 
correct. The misrepresentation in Fig. 4 is due to the fact that the particles are 
introduced into the box with random positions in the y- and z-directions. Purely 
random, unrelaxed particles have more close pairs than a lattice so that a larger 
/i(l) is required. This larger correction is illustrated in Table I under column R, 
which shows ii(l) calculated for a distribution of 1.50 particles with random 
positions in two of the three spatial directions, In Fig. 4, the filled-in squares 
represent the density with this correction for the same time as the open boxes. As 
expected, the true density lies somewhere between the tilled and open boxes, but 
much nearer to the filled boxes. In the shock (and post-shock) region, the viscosity 
will tend to relax the particles toward a more widely spaced spatial distribution for 
which the standard correction /igD)(l) should apply. Although we could have 
prepared a relaxed pre-shock particle distribution (as in Sect. 3) we chose to 
illustrate this additional correction explicitly. The shock width is approximately 7.5 
smoothing lengths as compared to 3 smoothing lengths for the best results obtained 
by MG. However, the smoothing length is larger for our exponential kernel than 
for the gaussian kernel used by MG. A more physically appropriate means of com- 
paring shock widths is in terms of the local mean particle separation 1”. Our shock 
width is 31 while that of MG is 52, which refers to a somewhat smaller Mach num- 
ber. We find that the shock width is quite independent of the Mach number for 
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FIG. 8. Ratio of the velocity dispersion to local sound speed plotted versus position for the same 
shock calculation as above. 

Mach numbers 63.0, and independent of the coefficient a in the expression for Q”’ 
over the range 0.7 < a < 3.0. 

Figure 8 shows the velocity dispersion in each bin as a function of position and 
indicates the amount of energy contained in the random motion of the particles. 
The increasing particle motion in the pre-shock flow is due to the separation of 
close pairs of unrelaxed particles which are introduced at random in the y-1 plane. 
Following the shock the particle dispersion is remarkably low. The post-shock par- 
ticle velocity dispersion and other results using QC3’ (with L-I = 5.0) were comparable 
to those presented here for Q”‘, but (2”’ was significantly less effective in damping 
particle motions across the shock, with the result that the post-shock temperature 
was too low (by 20% or more) and the post shock density was necessarily higher 
to achieve overall pressure balance across the shock. This effect is also present in 
Figs. 4 and 5, but the post-shock density and temperature are within 10% of the 
expected values. These difficulties with Q(” were less troublesome at low ach 
numbers. Post-shock oscillations of the sort found by MC for a viscosity analogous 
to Q”’ were not found in our study and are evidently an artifact of the one-dimen- 
sional geometry used by MG. 

V. CONCLUSIONS 

The results of our calculations show that the smoothed particle method can be 
extended to three-dimensional adiabatic flows which may possibly develop shocks. 
We have obtained accurate results for an adiabatic rarefaction wave, as well as for a 
steady state shock using a simple first order integration scheme and a very modest 
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number of particles (N lo*). Shock widths are about three mean particle 
separations, comparable to the one-dimensional results of MG. At the shock, 
systematic kinetic particle motion will be converted to three-dimensional counter- 
streaming and random particle motion. This represents an unrealized temperature 
which must be converted to thermal energy using an appropriate form of the 
artificial viscosity in order to obtain the proper jump conditions across the shock. 
Finally, great care must be taken at the locations of boundaries in the flow, and the 
proper biased point correction must be applied when using smoothed particle 
methods in three dimensions. Our work, and that of Wood, demonstrates that the 
correct density can be well approximated with a correction based on a uniform lat- 
tice distribution; this is not particularly obvious and may be regarded as an 
empirical result of our test calculations. 

To those experienced in computational hydrodynamics, the shocks calculated 
here may seem rather crude. However, it must be stressed that ours is a fully three- 
dimensional calculation and that the shock structure incorporates remarkable few 
particles. To achieve the same accuracy with a conventional grid approach, one 
would require about ten zones across the region shown in Figs. 4-8. The entire 3D 
grid would then consist of approximately 10 x 5 x 5 = 250 zones, comparable or 
somewhat larger to the 150 particles considered here. When viewed from this 
perspective, 3D particles methods provide an accuracy comparable to standard grid 
codes for the same expenditure of CPU time. They are also free of the many dif- 
ficulties specific to three-dimensional grid procedures. 

Finally we note that if the total number of particles N were increased, the rarefac- 
tion and shock waves would be sharper in physical space, but their widths in terms 
of the mean particle separation i would remain the same. For this reason, an 
economical calculation with small N, as described above, is sufficient to test the 
numerical procedure. 
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